NP-ODE: Neural process aided ordinary differential equations for uncertainty quantification of finite element analysis

نویسندگان

چکیده

Finite Element Analysis (FEA) has been widely used to generate simulations of complex nonlinear systems. Despite its strength and accuracy, FEA usually two limitations: (i) running high-fidelity often requires high computational cost consumes a large amount time; (ii) is deterministic method that insufficient for uncertainty quantification when modeling systems with various types uncertainties. In this article, physics-informed data-driven surrogate model, named Neural Process Aided Ordinary Differential Equation (NP-ODE), proposed model the capture both input output To validate advantages NP-ODE, we conduct experiments on simulation data generated from given ordinary differential equation collected real platform tribocorrosion. The results show NP-ODE outperforms benchmark methods. realizes smallest predictive error as well generating most reasonable confidence intervals best coverage testing points. Appendices, code, are available in supplementary files.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

Bayesian Solution Uncertainty Quantification for Differential Equations

We explore probability modelling of discretization uncertainty for system states defined implicitly by ordinary or partial differential equations. Accounting for this uncertainty can avoid posterior under-coverage when likelihoods are constructed from a coarsely discretized approximation to system equations. A formalism is proposed for inferring a fixed but a priori unknown model trajectory thr...

متن کامل

Adaptive finite element methods for differential equations

Gegenstand des Buches ist die Dual Weighted Residual method (DWR), ein sehr effizientes numerisches Verfahren zur Behandlung einer großen Klasse von variationell formulierten Differentialgleichungen. Das numerische Verfahren ist adaptiv, d.h. es konstruiert eigenständig eine Folge von Approximationen für eine gegebene Fragestellung. Typische Fragestellungen sind die Bestimmung gewichteter Mitte...

متن کامل

A New Method for Solving Partial and Ordinary Differential Equations Using Finite Element Technique

In this paper we introduce a new method for solving partial and ordinary differential equations with large first, second and third derivatives of the solution in some part of the domain using the finite element technique (here called the Galerkin-Gokhman method). The method is based on the application of the Galerkin method to a modified differential equation. The exact solution of the modified...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IISE transactions

سال: 2021

ISSN: ['2472-5854', '2472-5862']

DOI: https://doi.org/10.1080/24725854.2021.1891485